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Abstract-The dependence of the transition conditions between annular and fog flow on the parameters of a 
system with boiling flow are analysed in order to extend the applicability of a physical model of the two-phase 
flow recently proposed by the authors to calculate the friction coefficient. Having suitably represented the 
phenomenon, examination is made as to its influence on the analytical development of the model, the results 
obtainable from the latter being compared with those of the relations usually employed and with experimental 

indications, thus showing the broad field of validity of the formulae presented. 

1. INTRODUCTION 

IN A PREVIOUS paper [ 1) formulae were deduced, on the 
basis of a suitable physical model, for calculating the 
two-phase friction coefficient R (local) 

where 

& = (dPM(dP)i_o (1) 

(d&r = pressure drop between two very close 
sections of a channel traversed by two- 
phase flow ; 

(&ho = pressure drop between the same two 
sections when the channel is traversed by a 
saturated liquid. 

As can easily be imagined, the value of this ratio 
greatly depends on the phenomenology of the two- 
phase flow; the model suggested differentiates between 
cases of annular and fog flow. When, however, one is 
interested in the ratio of the pressure drop not between 
two infinitely close sections, but between two places at a 
finite distance from each other, it is necessary to 
integrate the ‘local’ expression along the pipe. By far the 
most interesting case is where the flow is diabatic in one 
component and the quality and void fraction of the 
two-phase mixture increase in the direction of motion. 
The type of flow set up in a section of the channel 
depends on system pressure, mass velocity and the 
quality; thus transition may take place between 
annular and fog motion in the diabatic case for the 
representation of which it was supposed in ref. [l] that 
the change in the type of flow happens at a certain void 
fraction c+, called transition c(. In practice, having 
assigned the thermal flow acting on the pipe one can get 
the void fraction variation with the position, then 
calculate the friction losses by using different formulae 
above and below the section where u = Q. 

Analytical integration of the expressions obtained is 
possible only for extremely simple thermal flow 
distributions, for instance when it is uniform. 

In this last case, the two-phase friction multiplier R 
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(symbol meanings are shown in the Nomenclature), 
with CL = 0 in the initial section of the channel and 
saturated liquid : for a, < aY, Be,, >> 2100, Be,, >> 2100 

1 T z Jc$ 1 

+s’ F a,+(P/zJ 12 (P/-T)[cc,+(P/T)]z 0 

J@f -- 11 (2) d 
where, with P = p,/(p,S), one gets 

T = 1 --p,/(p,S) = 1 -P (in almost all cases T < 0) 

an expression valid for T < 0; in ref. Cl] the case of 
T > 0 is also dealt with : 

for gr < rT, Reio 5 2100, Re,, >> 2100 

1 1 -T 5/Z 1 
+T4 jj p 

[( > 

IJxr-J(P/-- T)I 
‘2’” ,/af+J(P/-T) 

1 4% -- 
12 (P/-T) [c++(P/T)J’ 

(3) 
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NOMENCLATURE 

D hydraulic diameter of the pipe traversed 
by two-phase flow or equivalent diameter 

fi,, fti Darcy factors corresponding to Re,, 

G 

P 
17 

R, 

and Re,, 
mass flow rate 
pressure of the two-phase mixture 
two-phase friction coefficient, ratio of the 
pressure drop between two sections of a 

channel traversed by two-phase flow to 
pressure drop between the same two 
sections when only saturated liquid flows 
two-phase friction local coefficient 

~edxfl~~d WPJ (S - 1) 

if % < aT 

Re,,(X,/a,)(~,/~,)(S-l) 

if % ’ aT 

Relo Reynolds number of the saturated liquid 

s slip, ratio of the gaseous to liquid phase 
velocity 

T temperature of the two-phase mixture 
u,, ug specific volume of the liquid and the 

vapour 
X two-phase mixture titre 

xT? xf titre corresponding to CI~ and elf, 
respectively. 

Greek symbols 
a two-phase mixture void fraction 

Ef void fraction in the final section 

ET void fraction on transition between 
annular and fog flow 

Y surface liquid tension 

PI, P’s viscosity of liquid and vapour, 
respectively 

p,, pg density of liquid and vapour, 
respectively. 

(still for T < 0) ; 

for zf < c(r, Relo 5 2100, Re,, 5 2100 

1 1 1 

+ W/T)+ 11’ ar + (P/T) (P/T) 

1 
for fxf < tlT, Re,,, >> 2100, Re,, 6 2100 

P3 PfgfP, 

‘-- (P+Tc(,)~ + f,,p, l- 
x&s-1’2&[& [a,+;,T),‘] 

(4) 

(5) 

for c(~ > czT in the preceding formulae, always chosen on 
the basis of Re,, and Ref,, but where af has been 
replaced by czT, the following term is added : 

(for further details, see [ 11). 
The zT parameter plays an important role in 

determining l? whose course depends, as the quality in 
the pipe output section varies, on how the transition 
parameter changes with system conditions. 

From this point preciseinformationis necessary as to 

the type of two-phase flow changes from which 
physically significant aT values can be obtained. 
Unfortunately, experimental data are scarce and 
mostly refer to experiments on two-component 
adiabatic systems. 

In ref. Cl], since it was desired to check the first 
reported formulae on flows without excessively 
variable characteristics, the assumption was made that 
aT was constant or, similarly, that only the void fraction 
determined the type of flow. The results obtained with 
aT = O.&suggested by experimental indications and 
numerical tests-showed the low sensitivity of R to 
variation of the mass velocity and the need to increase 
aT when the pressure is very high compared to that of 
the flows examined. 

It must, on the other hand, be noted that from the 
conceptual viewpoint, study of the physical models for 
calculation of the two-phase friction multiplier is 
separate from that of the transition conditions; 
however, the formulae previously seen were deduced in 
attempting to satisfy two requisites: the first is their 
derivation from a physical model and from analysis of 
the phenomena and not from numerical artifices on the 
data, etc., so one must, as far as possible, compare the 
assumptions made on the course of aT with the little that 
is known experimentally ; the second is the possibility of 
using the formulae in the wider field of system 
functioning, without in any way expecting great 
precision, but having reliable results on variation of 
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the characteristics of our flow. To achieve this it is 
absolutely indispensable to know transition condition 
behaviour. 

The need has already been pointed out in ref. [ 1] for 
careful study of aT; the aim of this article is to develop 
this and show the reliability of the formulae proposed. 

2. TRANSITION BETWEEN ANNULAR AND 

FOG FLOW 

As previously mentioned, the type of flow set up in a 
pipe-in which a two-phase Aow passes, depends- 
apart from the void fraction-on system pressure and 
mass velocity; this will be kept in mind by considering 
Q a function of p and G. 

This function structure will be obtained from the 
laboratory executed observations inherent in flow 
transitions and the literature reports results of experi- 
ments carried out on flows with physical, chemical 
and geometric characteristics very different from those 
of interest to us. From these data one can thus obtain 
the qualitative course of the phenomenon, but cer- 
tainly not quantitative indications. Therefore, certain 
numerical assumptions will be provided, justified fol- 
lowing a check of the results. 

From analysis of the diagrams by Baker and other 
authors [2-4] or the correlations proposed by Quandt 
[S], it emerges that, on increasing p, c+ must also be 
increased while, by increasing G, LX~ decreases. The 
latter fact is particularly significant because of the 
previously reported formulae ; in fact,if the value of c+ is 
reduced in them, one gets smaller Rs and the same 
experimental data course as Muscettola [6] for whom 
the two-phase friction multiplier is a decreasing 
function of mass velocity. 

Deeper examination then shows that, having fixed a 
value for pressure, the curve xr = f(G)-where, of 
course, xT and gT are bound by refations 

1 

rT = i+[(l-x&/x& 
$=ZS 

may be approximated for suitable intervals of the 
variables (among them are those of technical interest), 
with a branch of the hyperbola, and that by varying p 
this hyperbola varies in shape, softening and moving 
vertically in the (x,-G)-plane. 

Therefore, we have put 

XT. = ( > + +B, (A,+& eFczq. (6) 

-Among the various structures approximating the 
dependence of xT on p the exponential one seemed 
the most physically opportune, especially due to the 
monotony of the first and second derivations. 

The programme for automatic calculation of R, 
mentioned in ref. Cl], had already been drafted in such a 
way as to enable the functional dependence of ur to be 
easily replaced : it is therefore used also for the checks 
that will now be discussed. 

3. APPLICATIONS AND COMPARISONS 

To consider xT the product of two factors, one For general observations on the formulae proposed, 
dependent on G, the other on p, implies the supposition reference should always be made to ref. [l] ; the 
that the relationship between such qualities, for G fixed introduction ofmore precise values for the void fraction 
and variable p, is independent of the particular value of on transition serves to overcome the problems set out in 
the mass velocity (a perfectly symmetrical statement the first paragraph, greatly enlarging the field in which 

when p is fixed and G varied); it has been assumed that 
such relationships be those that can be obtained from 
Baker’s diagrams for G N 800 kg m-’ s-i and which 
should be representative of average values. 

On the basis of an interpretation of Muscettola’s 
results on R1 (local) the values of c+ for several values of 
G at 69 bar, may then be fixed. If a greater number of 
dependable experimental data were available on 
transitions between flow types, the course ofcrr could be 
studied more accurately, thus removing that last part- 
an apparent numerical artifice-from the entire 
reasoning. 

It must, however, be noted that the choices made give 
results that agree with those obtained from the very few 
experimental data noted in the literature and, above all, 
it is noted afterwards that the CL~ obtained are very 
similar to those that could have been obtained from 
Baker’s curves, the small differences with the latter 
being qualitatively explainable by the difference in the 
working characteristics. 

It was, therefore, assumed that (where p is in bar and 
Gisinkgm-2s-1): 

for G = 816 and p= 0.97 x,=0.04 
G = 816 p = 55.16 xr = 0.28 
G = 816 p = 103.43 x1. = 0.38 
G=1000 p = 68.95 xT = 0.24 
G = 1800 p = 68.95 xr = 0.09, 

Having deduced the values of A,, B1, AZ, B, and C, 
one gets : 

x,(G, p) = [( 1067,622413/G)-0.3084241 (0.476615 

-0.442864 e-“.014721P). (7) 

The formula is obviously senseless for G > 3461 kg 
m-2 s-’ (the second member first factor becomes 
negative) but it is advisable not to use it for mass 
velocities exceeding 20~25~ kg me2 s-l, above 
which there is a zone in Baker’s diagram which is 
difficult to interpret; most applicative cases should, 
however, be covered. In fact, for very high G, supposing 
one may speak of stabilized fog flow, one would not be 
far out by assuming xr as practically zero. 

As regards pressure, it is advisable for this not to be 
much above 137.90 bar; in this case, too, the field of 
technical applications of two-phase flows is more than 
amply covered. 
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the results are reliable besides, as has been seen, solving 
methodological problems. 

R comes to be a function in the nature of a refrigerant, 
final quality, geometry of the system, pressure and 
velocity of the boiling fluid and the last of these 
parameters comes into play above all through its 
influence on c(r ; it is well to note that the expressions 
habitually used to calculate that coefficient, keeping 
account ofall these variables, are very few. For example, 
the classical Martinelli-Nelson diagrams [7], com- 
pletely neglect the mass velocity and the same occurs for 
Levy’s correlation [8] and all the formulae based on 
extremely simplified physical models which, generally 
speaking, are not even able to consider pipe 

dimensions. 
In the two following diagrams the results obtained by 

the formulae for systems with these characteristics, are 
graphically reported. 

For Fig. 1 (system 1): 

-saturated boiling in a pipe whose hydraulic diameter 
is D = 0.005 m ; 

-liquid at saturation temperature in the pipe input 
section ; 

-mass velocity G = 1000 kg mm2 s- ’ ; 
-system pressure variable between 45.5 and 85.9 bar. 

The different curves refer to different quality values of 
the mixture in the output sector (to be exact, from the 
lowest to the highest curve: xc = 0.05,0.10,0.15,0.20, 
0.25, 0.30,0.35,0.40). 

45.5 65.7 Bar 85.9 

FIG. 1. R = Apl,/ApIO for the system 1 whose characteristics are 
related in the text; from the lowest to the highest curve: 

xr = 0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40. 

42.6 

2 c_ 32.2 

? 

E 

2 

; 21.8 

1.0 h, , , , , , / , , , , , , , , , , , , 

10.1 30.3 Bar 50.5 

FIG. 2. R = Ap,,/Ap,, for the system 2 whose characteristics are 
related in the text; from the lowest to the highest curve: 

xy = 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60. 

For Fig. 2 (system 2) : 
-saturated boiling in a pipe whose hydraulic diameter 

is D = 0.01 m ; 
-liquid at saturation temperature in the pipe input 

section ; 
-mass velocity G = 800 kg mm2 s-l ; 
-system pressure variable between 10.1 and 50.5 bar. 

The different curves refer to different quality values of 
the mixture in the output sector (to be exact, from the 
lowest to the highest curve : xf = 0.25,0.30,0.35,0.40, 
0.45, 0.50, 0.55,0.60). 

In Figs. 3-6, instead, a comparison is made for the 
two previously seen systems between the two-phase 
friction factor value obtained with the suggested 
formulae and the one deducible from the Martinelli- 
Nelson diagram (continuous line : suggested formulae; 
dashed line : Martinelli-Nelson values). 

It may be observed that i? given by the formulae 
tends to be lower than Martinelli’s,* this is in 
accordance with available experimental information 
[2-61 and may be confirmed by the fact that this 
tendency is more marked for higher pressures. 
Martinelli and Nelson, in fact, obtained their graphs by 
basing their results on the integration of correlations 
valid for flows with a constant quality, due to Martinelli 

* This tendency is not general ; indeed it is very important 
that in particular conditions it be inverted, showing 
considerable agreement with particular experiments as is 
discussed later. 
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4.0 h I 

2.0 I I I I I 
45.5 55.6 65.1 75.8 Bar 85.9 

FIG. 3. Comparison between R = Ap,,/Apco obtained with 
the suggested formulae and with the Martinelli-Nelson 
diagram for the first on the systems previously analysed with 
outlet quality : xf = 0.10 (continuous line : suggested formula; 

dashed line: Martinelli-Nelson values). 

himself and to Lockhart; but more often the 
experiments showed that those correlations over- 
estimate Rt = (dp)TP/(dp)LO local for most values of G. 
Again, to explain the difference in the results, it is well to 
remember that the Martinelli-Nelson diagram, though 
generalized in use, was obtained by extrapolating data 
relative to annular flows, a fact which is often forgotten, 
yet which also explains why R is overestimated. 

Again, the experiments point out also at high 
pressure the considerable influence of mass velocity on 
the two-phase friction factor, which the suggested 
formulae succeed in reproducing over a wide interval ; 
as already mentioned, the values deduced by Martinelli 
and Nelson are not dependent on G. 

Marchaterre’s correlation, an improvement on 
Levy’s, gives local a as a function of G, but greatly 
underestimated and having a course which, on varying 
p, does not follow experimental results. 

Several expressions have been suggested for 
calculating local R which are valid in rather limited 
system parameter intervals, but deduced from the 
results of ad hoc tests where an attempt was made to 
bring out the inkence of the different variables in play. 
From the technical viewpoint they are not particularly 
useful nor even a valid term ofcomparison because they 

30.0 i\ \ 
24.5 \ R \ 

8.01 I I -1 

10.1 20.2 30.3 40.4 Bar 50.5 

FIG. 5. Comparison for the second system analysed with final 
quality xr = 0.30; at higher pressures the values obtained with 
the suggested formulae again become lower than Martinelli 
and Nelson’s and, as in the other graphs, their difference 

remains almost constant. 

sometimes contrast with one another. However, some 
of them, being based on a really large number of 
experiments, do succeed in having relatively wide 
applicability and structural simplicity. Among these 
the Lombardi and Pedrocchi [9] formula has been 
given particular attention and may serve to compare 
the suggested formulae with the laboratory results. 

According to this formula, the pressure drop-due to 
friction-along an infinitesimal tract of the channel 
along which the two-phase mixture passes, is given by: 

dPnictian = kG”y0.4v;86D- I.’ dz, 

where : 

Y surface liquid tension 
u, average specific volume, that is xus + (1 - x)u, 
D equivalent diameter of the pipe 

and, where the sizes are expressed in S.I. 

k = 0.83 

n = 1.4. 

In non-adiabatic conditions x varies with z and one 
can integrate along the channel to obtain Aprriction (for 
the calculations reported below integration was done 
analytically). 

45.5 55.6 65.7 75.8 Bar 85.9 10.1 20.2 30.3 40.4 Bar 50.5 

FIG. 4. Comparison for the same system as Fig. 3, but with FIG. 6. Comparison for the same system as Fig. 5, but with an 
outlet quality xr = 0.40. outlet quality xr = 0.60. 
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Table l.Systemcharacteristics: G = 800kgm-* s-‘,p = 10.13 bar = 146.96psi,L = 1 
m, D = 0.01 m. Direction of motion: vertical; y = 34.34 x lo-’ N m-r, v, = 0.001128 

m3 kg-‘, vg- U, = 0.190791 ms kgg’, Re,, = 53727.3, f = 0.020922 

Xf 

A~rrictio. 
proposed 
formulae 
(Pax 10s) 

A~rricti,, 
Lombardi- 

17 Pedrocchi 
proposed formulae 
formulae (Pa x 105) Observations 

0.2 0.144 19.1 0.214 
0.3 0.205 27.2 0.299 
0.4 0.268 35.4 0.379 
0.5 0.330 43.8 0.457 
0.6 0.394 52.1 0.533 
0.7 0.457 60.5 0.607 
0.8 0.521 68.9 0.679 
0.9 0.584 77.3 0.751 

The R are in very good 
agreement with those 
obtainable from the 
Martinelli-Nelson diagram 

The Lombardi-Pedrocchi formula gives Aprricrion greater than those proposed, so R 
too are superior to Martinelli-Nelson, though one is no longer at low pressure (see 
discussion of this problem at the end of the paragraph). 

In Tables 14 this pressure drop is compared with 
that obtainable from 

where f = 0.00560+0.5/(GD/~)“~3z, valid for 3 x lo3 
< Re < 3 x 106] and l? is given by the suggested 
formulae. 

To obtain y the relation 

Y = YoCl -_(TIT,)I”9 

= 75.5 x 10m3 N m-i, T, = 374”C, n = 1.2 

was used [lo]. 
Unfortunately, to be valid the Lombardi and 

Pedrocchi formula must be 0.2 x 10m3 N m-l < 
y < 0.8 x 10e3 N m-l ; further comparisons cannot be 
made at higher pressures, those at which nuclear 
systems operate and on whose data the suggested 
formulae have in part been constructed. 

In general it must be noted that at 10.13 bar the 
Lombardi-Pedrocchi formulae give values for the 
pressure drop which are higher than those deducible 
from the Martinelli-Nelson equation, contrary to the 
suggested formulae, which are in good agreement with 
the two American authors. 

When pressure increases, the two formulae continue 
to improve their agreement and, above all, the 
percentage variations of a become analogous as G 
increases. On the whole it seems that on varying mass 
velocity the suggested formulae havea smoother course 
than that of Lombardi and Pedrocchi (this lesser 
sensitivity at high pressures is justified by the 
experimental results but should also be valid at low p 
and high G considering what is said further on). 

If one examines the suggested formula at very low 
final qualities, lower than the transition quality, one 
becomes aware of one of its greatest defects: scarce 
sensitivity to variation of G in these conditions, due to 

the fact that G is kept in mind, thanks mostly to xr. The 
consequence of all this is that with very low final 
qualities* the formula gives an R practically 

independent of G, just as if one were using the 
Martinelli-Nelson correlation; the positive aspect is 
that this R seems to be in better agreement with the 
experimental than the Martinelli or Lotte+Flinn data 
and, besides, that G influences the values of xr for which 
this inconvenience is verified in such a way that they be 
very low, unless mass velocity is very small. 

The following table illustrates what has been said in 
the particular case of low pressures (the experimental 
data are dealt with by Huang and El-Wakil): an 
atmospheric pressure system is considered with G = 

169.53 kg m-’ s-l (Table 5) and (also at atmospheric 
pressure) G = 135.62 kg m-* s-i (Table 6). 

Incidentally, it should be noted that Huang and El- 
Wakil presented their data to show that at low pressure 
the two-phase friction coefficient obtainable from the 
Martinelli diagram for qualities of a few per cent is 
clearly lower than the real one: this tendency is the 
opposite of that seen at higher pressures, which was the 
basis for numerical development of the relation 
between c(r, p and G. Nevertheless, in those conditions 
the suggested formulae bring out higher values than 
Martinelli’s and, as we shall see further on, are in good 
agreement as to size with the laboratory data for all Gs 
of practical interest. This may be indirect confirmation 
of the assumptions made on d~r but above all it shows 
that the physical model on which the formulae are 
based, simple though it is, reproduces the salient 
aspects of two-phase flow. In fact, for final qualities not 

*Moreover, in such conditions they become important 
phenomena which are not considered in the physical model 
utilized, so use of the suggested formulae must be carefully 
examined (for further details see the article cited). 



Determining the two-phase friction coefficient 513 

Table 2. System characteristics: G = 1200 kg m-’ s-‘, p = 10.13 bar = 146.96 psi, 
L = 1 m, D = 0.01 m. Direction of motion: vertical; y = 34.34 x 10e3 N m-‘, 

V, = 0.001128 m3 kg-‘, sg-u, = 0.190791 m3 kg-‘; Ret,, = 80596.4, f = 0.019057 

Xf 

A~rriction 
proposed 
formulae 
(Pa x lo51 

I7 
proposed 
formulae 

A~wction 
Lombardi- 
Pedrocchi 
formulae 
(Pa x 105) Observations 

0.2 0.271 17.9 0.378 
0.3 0.408 26.3 0.527 
0.4 0.539 34.8 0.669 
0.5 0.670 43.3 0.806 
0.6 0.801 51.7 0.940 
0.7 0.932 60.2 1.070 
0.8 1.062 68.6 1.198 
0.9 1.193 77.1 1.324 

The R are slightly lower 
than those of Martinelli- 
Nelson (the difference 
diminishes with increasing 
xr both in absolute and 
relative values) 

In this instance the Lombardi-Pedrocchi formula gives values of Aprristion superior to 
those obtainable with Martinelli-Nelson. The R obtainable by that formula on 
increasing G from 800 to 1200 kg rnT2 s-i , are proportionately reduced more than the 
reported R. 

very low but lower than the transition value, the c+ 
effect does not come into the agreement at all if not for 
the fact that, thanks to its structure, it does not 
intervene. 

The experiments then show that by increasing G 
beyond 169 kg m-’ s-i R does not vary much and 
keeps very near to what was calculated with the 
expressions being examined; by reducing it, however, 
the two-phase friction factor may become very high and 
no longer capable of description either by the suggested 
formulae or the others usually employed. The uncertain 
data one has, for example, for atmosphericpressureand 
G = 88.15kgm-Zs-‘insomecasesdifferbyasmuchas 
100% from the correlations previously examined. 

4. CONCLUSIONS 

Introduction of the functional dependence ofx, from 
p and G really makes the formulae for caIculating R 
valid in a very wide interval of the magnitudes 
influencing pressure drop due to friction in the two- 
phase motion, 

The comparisons made in the preceding para- 
graph show that, for G variable from about 100 to 
2500 kg m- z s-l and with p between atmospheric pres- 
sure and 138 bar or even higher, the suggested expres- 
sions are reliable ; beyond those limits they still give 
the correct order of magnitude for the two-phase 
friction multiplier. 

Tabfe 3. System characteristics: G = 800 kg rn-’ s-r, p = 40.5 bar = 587.84 psi, L = 1 
m, D = 0.01 m; direction of motion: vertical; y = 19.88 x 10e3 N m-‘, V, = 0.001254 
m3 kg-‘, uI-u, = 0.047835 m3 kg-‘, Relo = 75046, f = 0.019368. The Lombardi- 
Pedrocchi formula may be used for y > 20 x 1O-3 N m-i in this case if it is at the limit of 
that interval and its results can regularly be removed by more than 15% from the 

experimental ones 

Xf 

APrrrctian 
proposed 
formulae 
(Pa x 105) 

APrriction 
(Lombardi- 

R Pedrocchi 
proposed formulae 
formulae (Pa x 105) Observations 

0.2 0.064 8.2 0.061 The R are lower than those 
0.3 0.083 10.7 0.082 of Martinelli-Nelson. For 
0.4 0.090 11.6 0.101 final high qualities there is 
0.5 0.100 12.9 0.120 good with agreement 
0.6 0.112 14.4 0.138 Lombardi-Pedrocchi 
0.7 0.125 16.0 0.156 values and those obtainable 
0.8 0.138 17.7 0.174 using Martinelli-Nelson 
0.9 0.151 19.5 0.191 

Note that the difference between the two Aprriction for high xr is around 20% of the value 
obtainable with the Lombardi-Pedrocchi formula which, however, was used slightIy 
outsideits field ofvalidity, and that in these conditions should overestimate the pressure 
drop. 
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Table4.Systemcharacteristics: G = 1200kgm-2s-‘,p = 40.5 bar = 587.84psi,L = 1 
m, D = 0.01 m; direction of motion: vertical; y = 19.88 x 10m3 N m-‘, II, = 0.001254 
m3 kg-‘, vs-u, 0.190791 m3 kg-‘, Re,, = 112570, f = 0.017692. As for the preceding 
table the value ofy is at the limit of the validity interval of the Lombardi and Pedrocchi 

formula 

Xf 

A~rristion 
proposed 
formulae 
(Pax 10’) 

17 
proposed 
formulae 

A~tricti,, 
Lombardi- 
Pedrocchi 
formulae 
(Pax 105) 

0.2 0.093 5.8 0.108 
0.3 0.118 7.4 0.144 
0.4 0.146 9.1 0.178 
0.5 0.175 10.9 0.211 
0.6 0.204 12.8 0.244 
0.7 0.234 14.6 0.275 
0.8 0.264 16.5 0.306 
0.9 0.294 18.4 0.337 

Observations 

17 are lower than 
Martinelli-Nelson. Aprric,ion 
obtained by Lombardi and 
Pedrocchi is lower than 
that obtainable with the 
Martinelli-Nelson R 

As for the data of the preceding table, the deviation between Aprriction calculated with 
the two different formulae does not differ too much from the tolerance percentage of the 
experimental formula, for which the observations already made are valid. Here, 
however, on increasing the titre the relative deviation diminishes. On the whole, then, it 
seems that by increasing G the R obtainable by Lombardi and Pedrocchi is influenced 
less than that of the suggested formulae, apart from very high qualities. 

Table 5. 

R R R 

XP (experimental) (suggested formula) (Martinelli-Nelson) (Lotte:Flinn) 

0.02 33 18.5 -7 19.2 
0.03 40 35.9 -10 38.1 
0.04 44 59.2 -14 64.0 
0.05 88.2 -19 97.2 

Table 6. 

R R R 

Xf (experimental) (suggested formula) (Martinelli-Nelson) (LottefiFlinn) 

0.02 35.6 in practice values identical values to 
0.03 53.3 equal to those of those of the pre- 
0.04 70.0 Table 5 (discards on ceding tables 
0.05 83.3 the tenths) 

For G and p typical of industrial and nuclear 
installations, and xf above a few per cent, as in the two 
cases reported in the diagrams, the experimental data is 
reproduced with better agreement than all the 
habitually used correlations in this type of calculation. 

As for the problems pointed out at the end of the third 
section, above all the influence of G on xT is such that the 
latter is very low in the technical cases of interest and, in 
any case, the formulae give good results also for 
qualities lower than the transition one. Thus the 
formulae may be used generally even for xf of the order 

ofthe units per cent with an approximation often better 
than other expressions found in the literature. 

The only exception: I? is clearly underestimated if 
one simultaneously checks that xf < xT, the mass flow 
rate is very small (G < 100 kg m-* s-l) and pressure 
low (approximately atmospheric). 
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DETERMINATION DU COEFFICIENT DE FROTTEMENT DIPHASIQUE DANS LA 
TRANSITION ENTRE LES ECOULEMENTS ANNULAIRES ET DE BROUILLARD 

RBsumC-La dipendance des conditions de transition entre Bcoulements annulaire et de brouillard vis-&vis 
des parametres d’un systeme d’bcoulement avec kbullition, est analysee de fapon B elargir l’applicabilite d’un 
modble physique d’bcoulement diphasique rkcemment propost par les auteurs pour calculer le coefficient de 
frottement. Ayant convenablement rep&sent& le ph&nom&ne, on examine l’influence sur le dCveloppement 
analytique, les rksultats etant cornparks avec ceux des relations habituellement utilisees et aussi avec les 

don&es exp&imentales, pour montrer le large champ de validitt des formules p&sent&es. 

BESTIMMUNG DES REIBUNGSBEIWERTS EINER ZWEIPHASENSTROMUNG IM 
UBERGANGSGEBIET ZWI~~HEN RING- UND SCHAUMSTR~MUNG 

Zusammenfassung-Es wird die Abhingigkeit der Bedingungen fiir den Ubergang zwischen Ring- und 
Schaumstrijmung von den Systemparametern bei StrGmungssieden untersucht, urn die Anwendbarkeit eines 
physikalischen Modells der Zweiphasenstrijmung zu erweitern, das von den Autoren zur Berechnung des 
Reibungsbeiwerts friiher vorgeschlagen wurde. Nach ausreichender Darstellung des PhInomens werden die 
EinfluBfaktoren auf die analytische Herleitung des Modells untersucht. Die mit dem Model1 ermittelten 
Ergebnisse werden mit den Werten aus den iiblicherweise angewendeten Beziehungen und mit 
experimentellen Daten verglichen. Es zeigt sich ein weiter Giiltigkeitsbereich der vorgeschlagenen Gleichung. 

Ol-IPEAEJIEHHE K03@@ki~HEHTA TPEHWR AJUl ABYX@A3HOl-0 IIOTOKA (TYMAHA) 
B KOJIbLJEBOM KAHAJIE 

Amio~aqm-_Anr pacnmpemis naanasosa npeMemiMocm (Pn3nYecKoii bioflenn nayx@a3noro TeYetma, 
panee npeanomemioii aBTopaMn Qns pacgeTa K03#+imieHTa -rpe~na, anana3HpyeTcn 3aBncnMocTb 
yCJIOBHii ncpcHOCa a nOTOKe TyMaHa .4JlX KOJIblIeBOrO KaHLUIa OT llapaMCTpOB CEiCTCMbI. npS HCKOTOPbIX 

YIIPOIQCHASIX MOlWIM IIOJIy’ICHbI pC3yJIbTaTb1, KOTOPbIC CpaBHHBalOTCI C 06bISHO IIpHMCH,,CMbIMB 38BH- 

CHMOCTIlMA A C 3KCIICPIIMCHTUIbHbIMH IIaHHbIMII. nOKa3aH0, ‘iT0 AIGU,a3OH CIIpaBCn,I&,BOCTH ,,&,C&rIO- 

XRHHbIX @OpM)‘JI 3Ha’IBTCJIbNO )‘BCJIWiEiJIC% 


